
Minimum planar multi-sink cuts with
connectivity priors⋆

Ivona Bezáková and Zachary Langley

Rochester Institute of Technology, Rochester, NY, U.S.A.
{ib,zbl9222}@cs.rit.edu

Abstract. Given is a connected positively weighted undirected planar
graph G embedded in the plane, a source vertex s, and a set of sink
vertices T . An (s, T)-cut in G corresponds to a cycle or a collection of
edge-disjoint cycles in the planar dual graph G∗ that define a planar
region containing s but not T . A cut with a connectivity prior does not
separate the vertices in T from each other: we focus on the most natural
prior where the cut corresponds to a (simple, i. e., no repeated vertices)
cycle in G∗. We present an algorithm that finds a minimum simple (s, T)-
cut in O(n4) time for n vertices. To the best of our knowledge, this is
the first polynomial-time algorithm for minimum cuts with connectiv-
ity priors. Such cuts have applications in computer vision and medical
imaging.

1 Introduction

We address the problem of finding a minimum simple single-source-multi-sink
cut in a positively weighted undirected planar graph G = (V,E,w) embedded in
the plane. In particular, given a source vertex s, and a set of sink vertices T , a
cut S ⊆ V is said to be a simple (s, T)-cut if S contains s and does not contain
any vertex in T and the dual edges of the cut edges {(u, v) | u ∈ S, v ̸∈ S} form a
simple cycle, i. e., no repeated vertices, in the dual graph. We present an O(n4)
algorithm that finds a simple (s, T)-cut of the smallest weight in a positively
weighted planar graph with n vertices. For a small example, see Figure 1(b).

Graph cuts are an important algorithmic tool in computer vision, see, e. g.,
[7, 6, 13]. For example, in the simplest form of image segmentation, a user is
asked to identify a point (seed) inside an object and in the background. Viewing
the input image as a graph, typically the 2d grid of pixels with edge weights rep-
resenting (dis)similarity of neighboring pixels, a natural segmentation approach
isolates the object by identifying a minimum cut between the two seeds. How-
ever, if the object contains thin parts (for example, if trying to isolate a vein
on an ultrasound image), it is likely that a minimum cut will opt to sever the

⋆ This material is based upon work supported by the National Science Foundation,
Award No. CCF-1319987. Part of the work was done while the first author visited
the Simons Institute for the Theory of Computing at the University of California,
Berkeley.

(a):

s

t2t1

(b):

s

t2t1

(c):

s

t2t1

(d):

s

t2t1

Fig. 1. (a) Minimum (s, T)-cut, weight 4ε: thick edges are of weight ∞, the five dashed
edges of weight ε, and the other four edges of weight 1. (b) Minimum simple (s, T)-cut,
weight 4 + 2ε. (c)-(d) Common pitfalls involving shortest paths between sinks in the
dual graph: (c) Merge all involved faces into a single face f and compute minimum
(s, f)-cut; here results in weight 2∞. (d) Cut the plane along the shortest paths, find
a shortest cycle that separates s from the “cut-out” face; here results in a non-simple
cut (the middle two faces are visited twice). Small circles denote dual vertices.

thin parts from the object, see, e. g., [13]. A typical solution is to ask the user
to identify multiple seeds inside the object. This might still result in the cut set
containing several disconnected regions, as seen in the example in Figure 1(a).
The problem can be remedied by enforcing a connectivity prior on the cut [13,
6, 14]. In other words, we do not look for a minimum cut but instead look for
a smallest cut that somehow “connects” the seeds inside the object. Arguably
the most natural connectivity prior is to require both the cut set as well as its
complement to induce a connected graph. For connected planar inputs, this cor-
responds to finding a simple dual cycle that separates the seeds inside the object
from the seed(s) outside. We also briefly discuss a connectivity prior where the
cut corresponds to a non-self-crossing tour. While we admit that our running
time is prohibitive for large inputs, we note that several applications first prepro-
cess the input by contracting subcomponents, obtaining a much smaller graph.
Our algorithms are to the best of our knowledge the first provably polynomial
algorithms for minimum (s, T)-cut problems with connectivity priors.

The algorithms are based on a dynamic programming approach along a dual
shortest path tree connecting the sinks. We first observe that there is a minimum
simple (s, T)-cut such that its corresponding dual cycle does not cross this tree.
However, the cycle might touch the tree arbitrarily many times, even along the
same tree branch from both sides. In such case we form the cycle by concatenat-
ing paths that connect pairs of vertices on the tree. The tricky part is to ensure
that the paths separate the source from the sinks and that the concatenation
results in a simple cycle.

Instead of exactly computing the minimum length of such separating paths,
we merely bound it to speed up the algorithm. In particular, we either get the
shortest possible length, or the quantity we compute is smaller than the shortest
length yet larger than the value of a minimum (s, T)-cut in which case the
quantity will be eventually eliminated from the minimum cut computation. To
guarantee that the cycle does not cross the tree, we “cut” the plane along the
tree, thus preventing paths from crossing it. This involves duplicating each tree
vertex as many times as is its degree in the tree, with no edges between the copies
of the same vertex. The most challenging aspect of the computation is to ensure

2

that we do not go through multiple copies of the same vertex – this is a problem
with forbidden pairs of vertices, searching for a shortest cycle separating s and
T , using at most one vertex of each forbidden pair. Our polynomial-time result
contrasts with a related forbidden pair problem searching for a shortest cycle
through a given vertex s, which is NP-hard even if the graph is planar and all
forbidden pairs are on the outerface [8].

We remark that two natural, fast, and seemingly working approaches based
on finding shortest sink-sink paths in the dual graph and contracting/merging
components along the paths do not yield correct algorithms for this problem;
see Figure 1(c)-(d).

We note that the single-source-multi-sinks problem in directed planar graphs
remains open as our techniques are specific to undirected graphs since we expect
to be able to traverse a path in both directions.

Related works. The case of a single sink t has been extensively studied as
any minimum (s, t)-cut is simple. The latest algorithms run in time O(n log log n)
for undirected graphs due to La̧cki and Sankowski [12], and in O(n log n) time
for directed graphs, see, e. g., Borradaile and Klein [4] and the references within.
Chalermsook, Fakcharoenphol, and Nanongkai [9] gave an O(n log2 n) algorithm
that finds an overall minimum cut (no pre-specified vertices to separate).

For multiple sinks, Chambers, de Verdière, Erickson, Lazarus, and Whittle-
sey [11] showed that the problem of finding a minimum simple multi-source-
multi-sink cut in a planar graph is NP-hard (see the proof of Theorem 3.1).
Bienstock and Monma [3] designed a polynomial-time algorithm that finds a
shortest circuit separating a set of vertices from the outerface.

Several recent papers addresses various “multi” cut and flow problems in
planar graphs. Bateni, Hajiaghayi, Klein, and Mathieu [1] designed a PTAS to
approximate the weight of a minimum multiway cut where a set of terminals
needs to be separated from each other. Borradaile, Klein, Mozes, Nussbaum,
and Wulff-Nilsen [5] gave a near-linear algorithm for the multi-source-multi-sink
flow problem.

For surfaces with genus g, Chambers, Erickson, and Nayyeri [10] designed
gO(g)n log n algorithms for finding minimum single-source-single-sink cuts in
surface-embedded graphs. Chambers et al. [11] showed that the problem of find-
ing a shortest splitting (i. e., simple and not homeomorphic to a disk) cycle is
NP-hard but fixed parameter tractable with respect to g. Cabello [8] studied
shortest contractible (i. e., homotopic to a constant function) and shortest sep-
arating (i. e., that split the surface into two connected components) cycles in
embedded graphs, showing that a shortest contractible cycle can be found in
polynomial time and the shortest separating cycle problem is NP-hard.

In a recent work [2], we investigated the existence and counting of “contigu-
ous” cuts among all minimum single-source-multi-sink cuts in planar graphs.
Unfortunately, the results heavily rely on the max-flow min-cut duality and do
not extend to problems that go beyond minimum cuts.

3

2 Preliminaries

Let G = (V,E,w) be a connected positively weighted undirected planar graph
embedded in the plane. Its dual (multi-)graph G∗ = (V ∗, E∗, w∗) is defined
as follows. V ∗ is the set of faces of G. For every edge e ∈ E bordering faces
f1, f2, the set E∗ contains the edge e∗ = (f1, f2) of the same weight as e, i. e.,
w∗(e∗) = w(e). The planar embedding of G yields the corresponding planar
embedding of G∗. For a given vertex s ∈ V and a set of vertices T ⊆ V , s ̸∈ T ,
an (s, T)-cut is a set of vertices S ⊆ V such that s ∈ S and S ∩ T = ∅. The
edges cut by the cut, i. e., {(u, v) ∈ E | u ∈ S, v ̸∈ S}, correspond to dual edges
C = {(u, v)∗ | u ∈ S, v ̸∈ S}. If C forms a simple cycle (no repeated vertices in
the dual graph), then we say that the (s, T)-cut is simple or a bond. We allow
C to be of length 1 (a dual self-loop), as well as of length 2 (formed by two
different dual edges). The weight of an (s, T)-cut is the sum of the edge weights
cut by the cut, i. e.,

∑
(u,v)∈E:u∈S,v ̸∈S w(u, v). For simple (s, T)-cuts this directly

corresponds to the length of the corresponding dual cycle.

Observation 1 A simple (s, T)-cut exists if and only if, after removing s from
G, the sinks are still connected.

Therefore, we assume that a simple (s, T)-cut exists. We also assume that
|T | > 1 since for |T | = 1 any minimum (s, T)-cut is simple. Moreover, we assume
that the degree of every vertex is > 1, as vertices of degree 1 can be merged with
their neighbor. By a “cycle” or a “path” we mean a simple cycle or a simple
path (no repeated vertices). If p is a path or a cycle, we denote by |p| its length,
i. e., the sum of the weights of edges on p. As we work with embedded graphs, we
abuse terminology and identify a path or a cycle with the corresponding curve.

Let α and β be (possibly closed) non-self-intersecting curves in the plane.
We say that α and β cross if there is a maximal curve χ (possibly just a point
x) in α ∩ β such that β continues on different sides of α at the end-points of χ;
we refer to such χ as a cross segment. If α and β do not cross at χ, they touch
at χ. If α ∩ β ̸= ∅ and they share more than just their end-points, we say that
α and β intersect.

Let G0 be a graph obtained from G by enlarging each u ∈ T ∪ {s} into a
small new face u∗ with ∞-weighted edges bounding it. Notice that there is a
straightforward bijection between simple (s, T)-cuts in G and simple cycles in
G∗

0−{u∗ | u ∈ T ∪{s}} that define a planar region containing s∗ but no t∗ ∈ T ∗,
where T ∗ := {t∗ | t ∈ T}. We refer to such cycles in G∗

0 as (s∗, T ∗)-separating
cycles. To simplify our language, the remainder of this text takes place in the
dual graph G∗

0. In particular, unless otherwise specified, by vertices and edges
we mean vertices and edges of G∗

0 and by the source and sinks we mean s∗ and
T ∗.

Let copt be a minimum (s∗, T ∗)-separating cycle in G∗
0. In this extended

abstract we focus on the computation of the weight |copt|; the algorithm can be
extended to obtain the corresponding cut within the same running time.

4

3 Graph H: cutting along a shortest path tree

Choose an arbitrary t∗1 ∈ T ∗ and build a shortest1 path tree τ from t∗1 to every
t∗2 ∈ T ∗, see Figure 2(a). Notice that every leaf of τ is a sink and that no sink
nor s∗ is an internal vertex of τ due to the ∞-weighted edges. Due to space
constraints we omit the proof of the following lemma.

Lemma 1. There exists a minimum (s∗, T ∗)-separating cycle c such that c does
not cross τ .

Remark 1. We could have considered shortest paths between every pair of sinks
which, in most cases, would have sped up the algorithm in practice. In the worst
case, however, the union of all such paths forms a tree; using a tree simplifies
the exposition in the paper.

Suppose we do a clockwise depth-first traversal of τ from t∗1 until we process
the entire tree and return back to t∗1. In a clockwise traversal, the neighbors of
every vertex are considered in a clockwise cyclic manner (that is, if we use edge
(u1, v) to get to v, then we continue with edge (v, u2) where u2 is the clockwise
next neighbor of v after u1). Let a0, a1, . . . , aℓ−1 be the sequence of vertices
encountered by the traversal, in this order and with repetitions – each vertex
appears in the sequence as many times as is its degree in τ . See Figure 2(a).

We associate certain edges of G∗
0 with each ax: let vx,0, vx,1, . . . , vx,dx+1 be

the neighbors of ax listed in the clockwise order from ax−1 to ax+1, where a−1 :=
aℓ−1 and aℓ := a0.

We construct a graph H analogous to G∗
0 that will prevent us from crossing

τ . Intuitively, the graph H corresponds to “cutting” the plane along the tree τ .
We remove all vertices in τ and add a new vertex bx for each ax; we include
edges of G∗

0 that do not involve τ , plus edges (bx, bx+1) for each x, and edges
from bx to each vx,i for 1 ≤ i ≤ dx. (If vx,i = ak, then let vx,i := bk.) See Figure
2(b). Formally,

V (H) = V ∗
0 − V (τ) ∪ {bx | x ∈ {0, 1, . . . , ℓ− 1}},

E(H) = {(u, v) ∈ E∗
0 | u, v ∈ V ∗

0 − V (τ)} ∪ {(bx, bx + 1) | 0 ≤ x < ℓ} ∪
{ex,i := (bx, vx,i) | 1 ≤ i ≤ dx}.

For convenience we define ex,0 := (bx−1, bx) and ex,dx+1 := (bx, bx+1). To simplify
our expressions, we define bx+y := b(x+y) mod ℓ for 0 ≤ x < ℓ and y ∈ Z such
that x+y ̸∈ {0, 1, . . . , ℓ−1}. Also, let B = {b0, . . . , bℓ−1}. Notice that every sink
t∗ ∈ T ∗ corresponds to a unique axt and therefore there is a unique corresponding
vertex bxt in H. We abuse notation and use T ∗ and s∗ to refer to the sinks and
the source in H. Also, b0, . . . , bℓ−1 is a cycle in H that bounds a single face fB.

From now on the entire discussion takes place in H.
By clockwise distance from bx to by, x, y ∈ {0, 1, . . . , ℓ − 1}, we mean y − x

if x ≤ y and ℓ + y − x if x > y. Intuitively, this is the number of vertices,

1 We allow the paths to use two ∞-weighted edges, at the start and at the end.

5

τ

a0 = t
∗

1

t
∗

2
= a4

t
∗

3
= a6 t

∗

4

a1

a2

a3

a5 a7

a8

b0 = t∗
1

t∗
2
= b4

t∗
3
= b6 t∗

4

b1

b2

b3

b5 b7

b8

e9,1

e9,3

b7

b33

p

s∗

(a) (b) (c)

Fig. 2. (a) Tree τ , vertices ax (notice that a2 = a8, a3 = a5 = a7, etc.). (b) Graph
H: vertices bx and edges ex,0, . . . , ex,dx+1 (depicted are e9,0 = (b8, b9), e9,1, e9,2, e9,3,
e9,4 = (b9, b10)); face fB is shaded. (c) Region Rp, here shown for a b7-b33 source-sinks
separating path p.

with repetition, we encounter during the traversal of τ from ax to ay. We write
bx ≺ by ≺ bz for x, y, z ∈ {0, 1, . . . , ℓ − 1} if x < y < z, or, if x > z, then either
x < y or y < z. We say that such by is clockwise between bx and bz.

Lemma 2. Let bi1 , bi2 , bi3 , bi4 be such that bi1 ≺ bi2 ≺ bi3 ≺ bi4 ≺ bi1 . Then,
ai1 = ai3 and ai2 = ai4 cannot be both true.

Proof. Suppose ai1 = ai3 and suppose that as we traverse τ from ai1 , we en-
counter ai2 before returning back to ai1 = ai3 . Then, by the nature of the
depth-first traversal, we must have processed all copies of ai2 before returning
back to ai1 . Therefore, ai2 ̸= ai4 . 2

Notice that any (s∗, T ∗)-separating cycle in G∗
0 that does not cross τ cor-

responds to a cycle in H that separates s∗ from all T ∗. The converse is not
always true since a cycle in H may visit bx, by where x ̸= y and hence bx ̸= by,
yet ax = ay, leading to a non-simple cycle in G∗

0. We say that a cycle in H is
(s∗, T ∗)-separating if it yields a (simple) (s∗, T ∗)-separating cycle in G∗

0.

4 Source-sinks separating paths

If a minimum (s∗, T ∗)-separating cycle in G∗
0 corresponds to a cycle in H that

touches fB , we will form it by concatenating paths between pairs of vertices in
B. We need to be careful about concatenation of intersecting paths, as well as
about separating s∗ from T ∗.

Definition 1. Let p be a bx-by path in H that does not go through the source or
any of the sinks, and, if it goes through a vertex bz ∈ B, then bx ≼ bz ≼ by. We
define the path-region(s) Rp as the planar region(s) on the right of p, bounded
by p and the clockwise bx-by part of the boundary of fB. We say that p is source-
sinks separating if s∗ ̸∈ Rp and that p is no-B if, except for bx and by, it does
not go through any vertices in B.

6

Algorithm 1 Bounding the length of a shortest ex,i-ey,j no-B source-sink sep-
arating path.

1: Let q be a shortest ey,j-s
∗ path in H.

2: ConstructHq by “cutting” the plane open along q and removing vertices in B∪{s∗}.
In particular, for every vertex u on q−{by, s∗}, replace it by two new vertices u1, u2,
and for every v such that (u, v) ∈ E(H), add edge (u1, v) if v is on the left of q, or
(u2, v) if it is on the right of q. Additionally, add edges (u1, u

′
1) and (u2, u

′
2) for every

(u, u′) on q and (v1, v2) for every v1, v2 ∈ V (H)−B− q such that (v1, v2) ∈ E(H).
Use the same edge weights as in H.

3: For every u ∈ q, compute the shortest distance distHq [vx,i, u1] from vx,i to u1 where
ex,i = (bx, vx,i). Let distq[u, by] be the distance from u to by along q.

4: return β[ex,i, ey,j] := w(ex,i) + minu∈q−{by ,s∗} distHq [vx,i, u1] + distq[u, by].

The definition is depicted in Figure 2(c). Notice that all the sinks that lie
clockwise between bx and by are strictly inside Rp ∪ fB .

In this section we bound the length of a shortest bx-by no-B source-sink
separating path p that starts with the edge ex,i and ends with the edge ey,j . We
refer to such paths as ex,i-ey,j no-B source-sink separating paths. Algorithm 1
summarizes the computation. It relies on the following lemmas; we omit their
proofs due to space constraints. The proof of Lemma 4 is of a similar flavor as
the forthcoming proof of Lemma 7. We note that the algorithm works even if
x = y (when searching for a no-B cycle c through bx, the only vertex in B on c).

Lemma 3. Let q be a shortest ey,j-s
∗ path in H − B ∪ {by}. There exists a

shortest ex,i-ey,j no-B source-sink separating path that does not cross q.

Lemma 4. Suppose there exists an ex,i-ey,j no-B source-sink separating path
in H; let p be a shortest such path. Then, the quantity computed by Algorithm 1
satisfies β[ex,i, ey,j] ≤ |p|. Moreover, if β[ex,i, ey,j] holds a numerical value, then
β[ex,i, ey,j] = |p|, or β[ex,i, ey,j] > |copt|.

Lemma 5. Algorithm 1 can be implemented in time O(n). Moreover, across
different ex,i, ey,j pairs, the computation of the length of the shortest ex,i-ey,j
no-B source-sink separating path can be done in overall time O(n2 logn).

5 Minimum (s∗, T ∗)-separating cycle

If a minimum (s∗, T ∗)-separating cycle goes through B, we decompose it into
source-sinks separating paths of the following type.

Definition 2. For bx, by ∈ B, bx ̸= by, and i, j such that 0 ≤ i ≤ dx and
1 < j ≤ dy + 1, let P [x, i, y, j] be the set of all bx-by source-sinks-separating
paths p in H such that
1. p leaves bx by an edge ex,i′ where i < i′,
2. p enters by by an edge ey,j′ where j′ < j, and
3. az1 ̸= az2 for every bz1 , bz2 on p where bz1 ̸= bz2 .

7

bx

by

by′

bz2

bz1

s∗

bx by

bz s∗

bx

by

by′

bz2

bz1

s∗
2

s∗
1

(a) (b) (c)

Fig. 3. (a)-(b): Possibilities for a shortest ex,i-ey,j source-sinks separating path,
schematic view: (a) Case 1: there exists by′ between bx and by such that ay′ = ay;
the path is split into three subpaths p1, p2 (non-dashed, no-B), and p3. (b) Case 3:
there is no such by′ or bx′ . (c): Proof of Lemma 8, paths found by Algorithm 2 might
intersect: Region R′

s∗ . We show two possible locations for s∗: if s∗ = s∗1, then s∗ is in
a region bounded by subpaths of p′1, p

′
2, and p′3 and L[x, i, y, j] > |copt|; if s∗ = s∗2, we

get a contradiction with the selection of p′1, p
′
2, and p′3.

For bx = by, i < j, let P [x, i, y, j] be the set containing a single path, bx, of
length 0.

In other words, p ∈ P [x, i, y, j] is a bx-by source-sinks-separating path that
leaves bx by an edge that comes after ex,i, enters by by an edge that comes
before ey,j , and it gives rise to a simple path in G∗

0 (i. e., repeated vertices are
not allowed). Recall also that a bx-by source-sink separating path visits only
those vertices in B that are clockwise between bx and by.

We bound the length of a shortest path p ∈ P [x, i, y, j] using dynamic pro-
gramming. In particular, we compute L[x, i, y, j] such that L[x, i, y, j] = |p|, or
|p| ≥ L[x, i, y, j] > |copt|. The algorithm, summarized in Algorithm 2, proceeds
by gradually increasing the clockwise distance of bx and by. Step 3 deals with
the base case, bx = by. For the inductive case, we distinguish three possibilities
based on the relative position of bx and by, as shown in Figure 3(a)-(b). Consider
the bx, bx+1, . . . , by path in H and the corresponding walk ax, ax+1, . . . , ay in G∗

0.
Steps 7-9 (case 1) deal with the case when ay is visited multiple times by the
walk, steps 10-12 (case 2) with the case when ax is visited multiple times, and
steps 13-14 (case 3) with the case when both ax and ay are visited exactly once.

The following lemma analyzes the structure of a shortest path p in P [x, i, y, j]
and provides rationale for steps 7-9 of the algorithm; we defer analogous lemmas
for steps 13-14 and 15 to the full version of the paper. The two subsequent
lemmas provide bounds on L[x, i, y, j].

Lemma 6. Let p be a shortest path in P [x, i, y, j]. If bx, by follow case 1, then
there exist z1, k1, z2, k2 satisfying the conditions in step 9 such that p is a con-
catenation of paths p1, p2, and p3, where p1 ∈ P [x, i, z1, k1], p2 is an ez1,k1-ez2,k2

no-B source-sinks-separating path, and p3 ∈ P [z2, k2, y, j].

Proof. Since ay = ay′ , path p needs to “jump” over by′ because of condition 3 of
Definition 2. Let bz1 ∈ p, bx ≼ bz1 ≺ by′ , be such that the clockwise distance from

8

Algorithm 2 Computing the weight of a minimum (s∗, T ∗)-separating cycle.

1: Create graph Hb by contracting B into a single vertex b. Let L0 be the weight of
the minimum (s∗, b)-cut in Hb.

2: Compute β[] for H using Algorithm 1.
3: Let L[x, i, y, j] = 0 if x = y and i < j. Otherwise, L[x, i, y, j] is undefined.
4: for d from 1 to ℓ− 1 do
5: for every x, y such that bx and by are at clockwise distance d and ax ̸= ay do
6: for every i, j, 0 ≤ i ≤ dx + 1, 0 ≤ j ≤ dy + 1 do
7: if there is a by′ , bx ≺ by′ ≺ by, such that ay = ay′ then
8: Let by′ be such that bx ≺ by′ ≺ by, ay = ay′ , and the clockwise distance

from bx to by′ is smallest possible.
9: Let

L[x, i, y, j] := min
z1,k1,z2,k2

{L[x, i, z1, k1] + β[ez1,k1 , ez2,k2] + L[z2, k2, y, j]},

where z1, k1, z2, k2 range over all possibilities such that
• bx ≼ bz1 ≺ by′ ≺ bz2 ≼ by,
• ax ̸= az1 or bx = bz1 , and az2 ̸= ay or bz2 = by, and
• if bx = bz1 then i < k1, and if bz2 = by then k2 < j.

10: else
11: if there is a bx′ , bx ≺ bx′ ≺ by, such that ax = ax′ then
12: Computation of L[x, i, y, j] is analogous to the computation above.
13: else
14: Let

L[x, i, y, j] := min
i′,z,k

{β[ex,i′ , ez,k] + L[z, k, y, j]},

where i′, z, k range over all possibilities where i < i′ and bx ≺ bz ≼ by.
15: return L∗ := min{L0,minx,i,y,j{β[ey,j , ex,i] + L[x, i, y, j]}}, where x, i, y, j range

over all possibilities such that either bx = by and i < j, or ax ̸= ay, i > 0 and
j ≤ dy.

bz1 to by′ is smallest possible. Such z1 must exist since p starts in B but it leaves
it before it reaches by′ . Let bz2 be the next vertex in B, after bz1 , encountered
when traversing p from bz1 . Note that bz2 exists as p eventually gets to by ∈ B.
Thus, p can be decomposed into several segments: a bx-bz1 path p1, a bz1-bz2
no-B path p2, and a bz2 -by path p3.

Notice that by′ ≺ bz2 ≼ by. This is because p enters vertices in B only between
bx and by and the p1 segment blocks off access to B between bx and bz1 , and
bz1 is the clockwise closest vertex to by′ such that bz1 ∈ p and bx ≼ bz1 ≺ by′ .
Also notice that for every bz′ on p3, it must be that bz2 ≼ bz′ ≼ by, as access to
vertices in B between bx and bz2 is blocked off by p1 and p2. Similarly, for every
bz′ on p1, it must be that bx ≼ bz′ ≼ bz1 . Therefore, all the p1, p2, p3 segments
are source-sinks separating, since s∗ ̸∈ Rp.

Next we argue that p1 ∈ P [x, i, z1, k1], where k1 is such that p leaves bz1 by
the edge ez1,k1 . If bx = bz1 , then, since p ∈ P [x, i, y, j], condition 1 of Definition
2 implies that i < k1. Therefore, we have p1 = bx and p1 ∈ P [x, i, z1, k1]. If
bx ̸= bz1 , then condition 1 of Definition 2 holds for p1 ∈ P [x, i, z1, k1] because

9

p ∈ P [x, i, y, j] and p and p1 share the starting edge. Condition 3 holds for
p1 since it holds for p. Condition 2 holds because if p1 entered bz1 by an edge
ez1,k′ , k1 ≤ k′, yet p leaves bz1 by the edge ez1,k1 and then it continues to bz2 ,
bx ≼ bz1 ≺ bz2 , we would get a loop, a contradiction with p being a path. Thus,
p1 ∈ P [x, i, z1, k1].

By analogous reasons we have that p3 ∈ P [z2, k2, y, j], where k2 is such that
p enters bz2 by the edge ez2,k2 . 2

Lemma 7. If P [x, i, y, j] ̸= ∅, then L[x, i, y, j] ≤ |p|, where p is a shortest path
in P [x, i, y, j].

Proof. The proof proceeds by induction on the clockwise distance from bx to by.
The base case, bx = by, follows from step 3 of Algorithm 2. For the inductive
case, we distinguish the three cases for positions of bx and by.

If bx, by follow case 1, then p can be decomposed into p1, p2, and p3 as
described in Lemma 6. Let z1, k1, z2, k2 be the corresponding values. Then,
L[x, i, y, j] ≤ L[x, i, z1, k1]+β[ez1,k1 , ez2,k2]+L[z2, k2, y, j], since L[] is computed
as a minimization that considers z1, k1, z2, k2 as one of the options. By Lemma
4, β[ez1,k1 , ez2,k2] ≤ |p2|. By the inductive hypothesis, L[x, i, z1, k1] ≤ |p′1| ≤ |p1|,
where p′1 is a shortest path in P [x, i, z1, k1]. Similarly, L[z2, k2, y, j] ≤ |p2|. There-
fore, L[x, i, y, j] ≤ |p1| + |p2| + |p3| = |p|. Cases 2 and 3 are analogous. 2

Lemma 8. If L[x, i, y, j] holds a numerical value, then L[x, i, y, j] = |p|, where
p is a shortest path in P [x, i, y, j], or L[x, i, y, j] > |copt|.

Proof. We proceed by induction on the clockwise distance from bx to by. For the
base case, we have bx = by, and step 3 computes L[x, i, y, j] correctly.

For the inductive case, suppose that bx and by fall under case 1. Let z′1, k
′
1, z

′
2,

k′2 be the values that minimize the expression in step 9. Then, L[x, i, y, j] =
L[x, i, z′1, k

′
1] + β[ez′

1,k
′
1
, ez′

2,k
′
2
] + L[z′2, k

′
2, y, j]. By the inductive hypothesis,

L[x, i, z′1, k
′
1] > |copt| or L[x, i, z′1, k

′
1] = |p′1|, and β[ez′

1,k
′
1
, ez′

2,k
′
2
] > |copt| or

β[ez′
1,k

′
1
, ez′

2,k
′
2
] = |p′2|, where p′1 and p′2 are shortest paths in P [x, i, z′1, k

′
1] and

P [z′2, k
′
2, y, j], respectively. By Lemma 4, β[ez′

1,k
′
1
, ez′

2,k
′
2
] > |copt| or

β[ez′
1,k

′
1
, ez′

2,k
′
2
] = |p′2|, where p′2 is a shortest ez′

1,k
′
1
-ez′

2,k
′
2

no-B source-sinks sep-
arating path. If L[x, i, z′1, k

′
1] > |copt| or L[z′2, k

′
2, y, j] > |copt| or β[ez′

1,k
′
1
, ez′

2,k
′
2
] >

|copt|, we have L[x, i, y, j] > |copt| since L[x, i, z′1, k1], β[ez′
1,k

′
1
, ez′

2,k
′
2
], and

L[z′2, k
′
2, y, j] are nonnegative.

It remains to deal with the case when L[x, i, z′1, k
′
1] = |p′1|, β[ez′

1,k
′
1
, ez′

2,k
′
2
] =

|p′2|, and L[z′2, k
′
2, y, j] = |p′3|. By Lemma 7, we have L[x, i, y, j] = |p′1| + |p′2| +

|p′3| ≤ |p|. Let p′ be the concatenation of p′1, p′2, and p′3. We will show that either
p′1, p′2, and p′3 do not intersect, in which case p′ ∈ P [x, i, y, j] and, therefore,
L[x, i, y, j] = |p′| = |p|; or they do intersect, in which case L[x, i, y, j] > |copt|.

Claim. For every bu, bv, bu ̸= bv, on p′, we have au ̸= av.

Proof: Suppose, by contradiction, that there are bu, bv, bx ≼ bu ≺ bv ≼ by, on
p′ such that au = av. Since p′1 ∈ P [x, i, z′1, k

′
1], it cannot be that both bu and bv

10

are on p′1 due to condition 3 in Definition 2. Similarly, bu and bv cannot both
be on p′3. And, as p′2 is a no-B path and az′

1
̸= az′

2
due to Lemma 2 applied to

z′1, y
′, z′2, y, vertices bu and bv cannot both be on p′2. Recall also that p′1 does not

contain a vertex bx′ with ax′ = ay, as by′ has the smallest clockwise distance from
bx and it comes after bz′

1
. Thus, bu is on p′1 and bv on p′3. Since au = av ̸= ay,

we get bu ≺ by′ ≺ bv ≺ by, a contradiction with Lemma 2. ♢
If p′1, p′2, and p′3 do not intersect, then p′ ∈ P [x, i, y, j]; this is due to the above

claim and the p′k’s being from their respective P []. Thus, L[x, i, y, j] = |p′| = |p|.
If p′1, p′2, and p′3 intersect, their concatenation results in a walk with one

or more loops, not a path. Let us look at the path-regions Rp′
1
, Rp′

2
, and Rp′

3
.

The union of these regions and fB contains all the sinks between bx and by
strictly inside. Its complement contains the source. Let R′ be the complement of
Rp′

1
∪Rp′

2
∪Rp′

3
∪fB. Let R′

s∗ be the maximal simply connected planar region in
R′ that contains s∗. If R′

s∗ borders no bv, by ≼ bv ≼ bx, then R′
s∗ is bounded by

sub-paths of p′1, p′2 and p′3, see Figure 3(c) where we assume s∗ = s∗1. Let c be
the cycle in G∗

0 corresponding to the boundary of R′
s∗ ; notice that c is simple.

Since R′
s∗ does not contain any sinks, c is an (s∗, T ∗)-separating cycle. Then,

L[x, i, y, j] = |p′1| + |p′2| + |p′3| > |c| ≥ |copt|.
Finally, if R′

s∗ borders some bv for by ≼ bv ≼ bx, see Figure 3(c) (assume
s∗ = s∗2), then R′

s∗ is enclosed by the clockwise by-bx part of the boundary of
fB and by a bx-by path p′′ that is formed by concatenating segments of p′1, p′2,
and p′3. Observe that p′′ ∈ P [x, i, y, j] and |p′′| < |p′1| + |p′2| + |p′3| ≤ |p|. This is
a contradiction with p being a shortest path in P [x, i, y, j]. 2

Corollary 1. If P [x, i, y, j] ̸= ∅, then L[x, i, y, j] = |p| where p is a shortest path
in P [x, i, y, j], or L[x, i, y, j] > |copt|. If P [x, i, y, j] = ∅, then either L[x, i, y, j]
is undefined, or L[x, i, y, j] > |copt|.

The corollary follows from observing that if P [x, i, y, j] ̸= ∅, then L[x, i, y, j]
holds a numerical value. Now we are ready for the main theorem and the sketch
of its proof; we defer the complete proof to the full version of the paper.

Theorem 1. Algorithm 2 computes the weight of a minimum (s∗, T ∗)-separating
cycle in G∗

0 (and a minimum simple (s, T)-cut in G). It runs in time O(n4).

Proof (sketch). Similarly as in Lemma 7, we get L∗ ≤ |copt|. Suppose L∗ <
|copt|. Since the value of L0 corresponds to an (s∗, T ∗)-separating cycle, we get
|copt| ≤ L0. Thus, L∗ = β[ey′,j′ , ex′,i′] + L[x′, i′, y′, j′] for some x′, i′, y′, j′. If
either quantity is > |copt|, we get |copt| < |copt|, a contradiction. If both quantities
are computed correctly, we get a shorter (s∗, T ∗)-separating cycle than copt, a
contradiction. Therefore, L∗ = |copt|.

The running time is O(n4) because there are O(n2) possibilities for (x, i), (y, j)
since they correspond to a pair of edges; and the computation L[x, i, y, j] con-
siders another O(n2) pairs of (z1, k1), (z2, k2). 2

Remark 2 (Extensions). The presented approach can be used for other con-
nectivity priors. For example, a cut is contiguous if the dual cut-edges form a

11

non-crossing tour that separates s∗ from T ∗ (we allow repeated vertices but not
edges as long as the tour can be drawn in a non-self-crossing manner in the in-
finitesimal neighborhood of each vertex). In a prior work [2], we computed how
many of the minimum (s, T)-cuts are contiguous; however, the earlier approach
did not extend to finding, among all contiguous cuts, the one with the smallest
weight. Algorithm 2 can be modified to allow ax = ay, but one has to be careful
not to use the edges of τ more than once. We leave the details for the journal
version of this paper.

References

1. Bateni, M., Hajiaghayi, M., Klein, P.N., Mathieu, C.: A polynomial-time approxi-
mation scheme for planar multiway cut. In: Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). pp. 639–655 (2012)

2. Bezáková, I., Langley, Z.: Contiguous minimum single-source-multi-sink cuts in
weighted planar graphs. In: Proceedings of the 18th Annual International Com-
puting and Combinatorics Conference (COCOON). pp. 49–60 (2012)

3. Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to
minimize certain distance measures. Algorithmica 5(1), 93–109 (1990)

4. Borradaile, G., Klein, P.N.: An O(n logn) algorithm for maximum st-flow in a
directed planar graph. J. ACM 56(2) (2009)

5. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-
source multiple-sink maximum flow in directed planar graphs in near-linear time.
In: Proceedings of the IEEE 52nd Annual Symposium on Foundations of Computer
Science (FOCS). pp. 170–179 (2011)

6. Boykov, Y., Veksler, O.: Graph cuts in vision and graphics: Theories and applica-
tions (2006), in Handbook of Mathematical Models in Computer Vision (Springer)

7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

8. Cabello, S.: Finding shortest contractible and shortest separating cycles in embed-
ded graphs. ACM Trans. on Algorithms 6(2) (2010), ext. abstr. in SODA ’09.

9. Chalermsook, P., Fakcharoenphol, J., Nanongkai, D.: A deterministic near-linear
time algorithm for finding minimum cuts in planar graphs. In: Proceedings of the
15th Annual ACM-SIAM Symp. on Discr. Algorithms (SODA). pp. 828–829 (2004)

10. Chambers, E.W., Erickson, J., Nayyeri, A.: Minimum cuts and shortest homologous
cycles. In: Proceedings of the 25th Annual ACM Symposium on Computational
Geometry (SCG). pp. 377–385 (2009)

11. Chambers, E.W., de Verdière, É.C., Erickson, J., Lazarus, F., Whittlesey, K.: Split-
ting (complicated) surfaces is hard. Comput. Geom. 41(1-2), 94–110 (2008)

12. Lacki, J., Sankowski, P.: Min-cuts and shortest cycles in planar graphs in
O(n log log n) time. In: Proceedings of the 19th Annual European Symposium on
Algorithms (ESA). pp. 155–166 (2011)

13. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with
connectivity priors. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR) (2008)

14. Zeng, Y., Samaras, D., Chen, W., Peng, Q.: Topology cuts: A novel min-cut/max-
flow algorithm for topology preserving segmentation in N-D images. Computer
Vision Image Understanding 112, 81–90 (2008)

12

